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Material
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Lecture Notes: Inverse Problems: A Deterministic Approach using
Physics-Based Reduced Models, OM.
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Part I.1

Elements of approximation theory

Linear and Nonlinear Approximation
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Approximation of a function

Let (V , ∥ · ∥) be a Banach/Hilbert space.

Examples: V = Rd ,Lp(Ω),W k,p(Ω), with Ω ⊂ Rd .

The goal of approximation is to replace a target function u ∈ V by a simpler
function (easy to work with in practice).

An approximation is searched in a set of functions Vn ⊂ V , where n is related
to some complexity measure, typically the number of parameters.
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Approximation of a function

We distinguish:

linear approximation when Vn is a �nite-dimensional linear space

Vn = span{vi}ni=1 =

{
n

∑
i=1

civi : ci ∈ R

}
where the {vi}ni=1

form a basis of Vn.

Examples of vi : polynomials, trigo. polynomial, �xed knot splines...

nonlinear approximation when Vn is a nonlinear set. Examples:

n-term approximation

Vn =

{
n

∑
i=1

civi : ci ∈ R, vi ∈ D
}

where D = {vi}∞
i=1 is a dictionary of functions

nonlinear parametric manifold:

Vn = {D(c) : c ∈ Rn}
with some given nonlinear map D : Rn → V .

Examples: rational functions, free-knot splines, neural networks, tensor
networks...
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Encoding

We take the view that nonlinear approximation methods depending on n
parameters are built on two mappings:

An encoder mapping
E : V → Rn

which when given u ∈ V chooses n parameters E(u) ∈ Rn to represent u.

A decoder mapping
D : Rn → V

which maps a vector c ∈ Rn back into V and is used to build the
approximation of u.

The set
Vn := Im(D) = {D(c) : c ∈ Rn} ⊂ V

is viewed as a parametric manifold.

Remark: The encoder-decoder scheme describes a process of dimensionality
reduction.
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Examples of E, D

Linear orthogonal projection:
V Hilbert, Vn = span{vi}ni=1, {vi} ONB

Choose E(u) = (⟨u, vi ⟩)ni=1).

Choose D(c) = ∑n
i=1 civi ∈ Vn

u ≈ D(E(u)) = ∑n
i=1 ⟨u, vi ⟩ vi = PVnu

Compressed sensing:
V = RN with N ≫ 1.

ΣN
k : Vectors of RN with at most k non zero entries.

Task: Approximate u ∈ ΣN
k from m observations ΦT

1
u, . . . ,ΦT

mu (with
1 ≤ m ≤ N).

Choose E(u) = ΦTu with Φ = [Φ1| . . . |Φm ]

Choose D(c) = argminv∈RN {∥v∥ℓ1 : ΦT v = c} ∈ ΣN
k̃

u ≈ D(E(u)) ∈ ΣN
k̃

Neural Networks (see later on).
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Error of best approximation

Let (V , ∥ · ∥) be a normed space, Vn a given approximation set.

For a given target function u ∈ V , the error of best approximation

en(u) = inf
v∈Vn

∥u − v∥

quanti�es the best we can expect from Vn.
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Fundamental problems in approximation

For a sequence (Vn)n≥1 of sets of growing complexity:

(universality) Does en(u) → 0 as n → ∞ for all u ∈ V ?

(expressivity) For a certain class of functions K ⊂ V , determine how fast
en(u) → 0, or determine the complexity

n = n(ε,K) s.t. en(u) ≤ ε.

Typically, we search for
en(u) ≤ Cγ(n)−1

where C ≥ 1, γ is a stricly increasing growth function, and

n(ε, u) ≥ γ−1(ε/C ).
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Fundamental problems in approximation

(approximation classes) Characterize the class of functions for which a
certain convergence type is achieved, e.g.,

Aγ = {u ∈ V : sup
n≥1

γ(n)en(u) < +∞}

for some growth function γ.

(algorithm) Construct an approximation un ∈ Vn such that

∥u − un∥ ≤ Cen(u) = C inf
v∈Vn

∥u − v∥

with C independent of n.

Algorithms depend on the available information, e.g., given by observations
such as point evaluations, or equations satis�ed by the functions.
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Optimal approximation of a model class

Suppose now that we want to approximate all functions u from a compact
subset K ⊂ V (model class).

The quality of an encoding procedure with n parameters can be measured as:

In the worst case sense:

Ewc(K; (E,D)) := max
v∈K

∥v − D(E(v))∥

On average:

Eav(K; (E,D)) :=
∫
K
∥v − D(E(v))∥dρ(v)

and we can thus de�ne a notion of n-width

inf
(E,D)

E:V→Rn

D:Rn→V

E⋆(K; (E,D)), ⋆ = {wc, av}

by optimizing the choice of (E,D) under speci�c restrictions.
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Notions of n-widths

inf
(E,D)

max
v∈K

∥v − D(E(v))∥.

We distinguish:

Approximation numbers an(K): Both E, D are linear:

an(K) := inf
L linear

rank(L)=n

max
v∈K

∥v − L(v)∥,
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Approximation numbers an(K): Both E, D are linear:

an(K) := inf
L linear

rank(L)=n

max
v∈K

∥v − L(v)∥,

Kolmogorov n-width dn(K): Only D is linear

dn(K) := inf
dim(Vn)=n

dist(K,Vn) = inf
dim(Vn)=n

sup
u∈K

inf
v∈Vn

∥u − v∥V

We have
dn(K) ≤ an(K),

and equality holds in Hilbert spaces.

dn(K) measures how well the set K can be approximated (uniformly) by
an n-dimensional space.

Useful in forward MOR.
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Notions of n-widths
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(E,D)

max
v∈K

∥v − D(E(v))∥.

We distinguish:

Approximation numbers an(K): Both E, D are linear:

Kolmogorov n-width dn(K): Only D is linear

Sensing numbers sn(K): Only E is linear:

sn(K) := inf
D,λ1,...,λn

max
u∈K

∥u − D(λ1(u), . . . ,λn(u))∥

where the inf runs over all D maps and λi ∈ V ′.
Useful in inverse problems.
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Kolmogorov n-width dn(K): Only D is linear

Sensing numbers sn(K): Only E is linear:

Manifold width δn(K): Both E, D are nonlinear.

Stable manifold width δ
cont,γ
n (K): for robustness against noise

perturbations,

δ
cont,γ
n (K) := inf

(E,D)
sup
u∈K

∥u − D(E(u))∥,

where E, D are seached among Lipschitz cont. mappings,

∥E(u)− D(v)∥Rn ≤ γ∥u − v∥V , ∥D(c)− D(q)∥V ≤ γ∥c − q∥Rn .

This concept is studied in [DHM89, CDPW21].
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We have:

an(K) ≥ {dn(K), sn(K)} ≥ δn(K),

an(K) ≥ δ
cont,γ
n (K) ≥ δn(K)
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Optimal linear approximation: Kolmogorov widths

The Kolmogorov n-width of K is de�ned as

dn(K) := inf
dim(Vn)=n

dist(K,Vn) = inf
dim(Vn)=n

sup
u∈K

inf
v∈Vn

∥u − v∥V

where the in�mum runs over all linear subspaces Vn of dimension n.

If K is equipped with a probability measure π ∈ P(K), we can de�ne a
weighted Kolmogorov n-width,

d
(p,π)
n := inf

dim(Vn)=n

(∫
K

inf
v∈Vn

|u − v∥pV dπ(u)

)1/p

If V is a Hilbert space, p = 2 and π the push-forward measure of a random
variable U ∈ L2(Ω,V ), this is equivalent to

inf
dim(Vn)=n

∫
K
∥u(ω, ·)− PVn

u(ω, ·)∥2V dω

and an optimal space Vn is given by Singular Value Decomposition.
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Bounds for Kolmogorov n-width

For V = Lp(Ω), Ω = [0, 1]d , 1 ≤ p ≤ ∞, and K the unit ball of W k,p(Ω):

dn(K) ∼ n−k/d

and optimal performance is obtained by �xed-knot splines (with degree
adapted to the regularity).

We observe:

The curse of dimensionality: Rate degrades as d increases.

The blessing of smoothness: Improvement of the rate of approximation
when k increases.

Few results beyond the classical smoothness classes. However, some
crucial results exist for K generated by parametric PDEs: we will discuss
them in the MOR part.
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Bounds for manifold n-width

For V = Lp(Ω), Ω = [0, 1]d , 1 ≤ p ≤ ∞, and K the unit ball of W k,p(Ω) or
Besov spaces Bk

p (L
τ) which compactly embed in Lp , it holds

δ
cont,γ
n (K) ∼ n−k/d

and optimal performance is obtained by, e.g., free-knot splines or best n-term
approximation with a dictionary of tensor products of dilated splines. [DHM89]

We observe:

We cover a larger class of sets than with linear methods.

For approximation with continuous parameters, the curse of dimension is
unavoidable. What happens for discontinuous parameters?

Extra regularity does not help: curse of dimension even for K ⊂ C∞(Ω).

These rates do not explain behavior of neural networks. ⇒ Need to
consider di�erent approximation classes.

Olga MULA (TU Eindhoven) Optimal schemes for inverse problems 16/ 33



Part I.2

Elements of Approximation Theory

The class Vn of Neural Networks
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Let us avoid alchemy

To avoid that Machine Learning and DNN become the alchemy of our century,
Ali Rahimi asked in 2017 for more rigor, and more theory in his Test-of-Time
award's speach. There is still much to do.
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Shallow Neural Networks

A shallow neural network (with one hidden layer of width m) is a function

f : Rd → R

x 7→ f (x) := aT σ(Ax + b) =
m

∑
i=1

aiσ

(
d

∑
j=1

Aijxj + bi

)
where a ∈ Rm, A ∈ Rm×d , and σ is a given nonlinear function (activation
function).

Remark that we can view NN as a nonlinear decoder:

D : Rn → V = F(Rd ,R)

c = {a,A, b} 7→ D(c) = f
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Shallow Neural Networks

Classical piecewise polynomial activation functions:

ReLU function σ(t) = max{0, t}
RePU(p) function σ(t) = max{0, t}p

ReLU and RePU networks produce free-knot splines: they are a piecewise
polynomial approximation on a free partition of Rd determined by m
hyperplanes:

Hi = {x ∈ Rd : wT
i x + bi = 0}, wi = (Aij )

d
j=1 ∈ Rd
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Shallow Neural Networks

Universal approximation property:

The set

Vn := span{x ∈ Rd 7→ σ(wT x + b) : w ∈ Rd , b ∈ R}

is dense in C([0, 1]d ) if and only if σ is not a polynomial.

Some historical papers on this topic: Cybenko [Cyb89], Hornik [Hor91], Pinkus
et al. [LLPS93].
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Width vs. depth and the ability to create oscillations

With the universal approximation property, we have addressed the question:

�Can I approximate any continuous function by a neural network?�

And the theorem's answer is

YES provided that the activation functions are not polynomials.

But how much complexity (how many terms) do we need to approximate a
function to a given accuracy ε? Can the complexity be decreased by leveraging
depth?
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Deep Neural Networks

f : Rd → R

x 7→ f (x) := TL ◦ σ ◦TL−1 ◦ σ ◦ · · · ◦T1 ◦ σ ◦T0(x)

with Tℓ : Rmℓ → Rmℓ+1 an a�ne map

Tℓ(x) = Aℓx + bℓ, 0 ≤ ℓ ≤ L

and (m1, . . . ,mL) ∈ NL with m0 = d , mL+1 = 1 (or mL+1 = d̃).

Figure: Evolution of linear regions in a DNN with a 2d input (from [HR19])

For a ReLU or REPU(p) activation function σ, the number of piecewise
domains grows exponentially with the depth L. (free-knot spline)
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Width vs. depth and the ability to create oscillations

Frensen, Sasao and Butler prove the following theorem [FSB10]:

Let f ∈ C3([a, b]) and set

κ :=
1

4

∫ b

a

√
|f ′′(x)|dx

Let CPAε(f ) be

CPAε(f ) := {g : [a, b] → R cont. and piecewise a�ne s.t. ∥f − g∥∞ ≤ ε}

The smallest number of segments for a g ∈ CPAε(f ) scales as

s(ε) ∼ κ√
ε

as ε → 0.

Complexity of a NN to create that many oscillations?
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Width vs. depth and the ability to create oscillations

Composition creates exponentially many oscillations, addition only linearly
many.

Consider the sawtooth function

f (x) =

{
2x if 0 ≤ x ≤ 1/2
2− 2x if 1 ≤ x ≤ 1

= 2ReLU(x)− 4ReLU(x − 1/2)

The m-fold composition fm = f ◦ · · · ◦ f is a function in [0, 1] with 2m − 1
oscillations.

A function with m scaled and translated copies has only m oscillations.

Therefore

s(ε) ∼ κ√
ε

⇒ m ∼
{
ln(κε−1/2) folds

κε−1/2 shallow (translated copies)
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Parametric manifolds Vn based on neural networks

Let ΦL,m be the class of neural networks with depth L and widths
m = (m1, . . . ,mL).

We de�ne

Vn := {v ∈ ΦL,m : L ∈ L, m ∈ ML, compl(v) ≤ n}

where compl(v) is a complexity measure, L ⊂ N is the set of possible depths
and ML ⊂ NL the set of possible widths.

Two typical classes of architectures:

Fixed depth L and free width:

L = {L}, ML = {(W , . . . ,W ) : W ∈ N}

Free depth and �xed width W :

L = N, ML = {(W , . . . ,W )}
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Complexity compl(v)

For a function v in the class ΦL,m of neural networks with depth L and widths
m = (m1, . . . ,mL), di�erent measures of complexity:

number of parameters (fully connected networks):

complF (v) =
L

∑
ℓ=0

mℓmℓ+1 +mℓ+1 ∼ W 2L for mℓ ∼ W

number of non-zeros parameters (sparsely connected networks)

complS (v) =
L

∑
ℓ=0

∥Aℓ∥0 + ∥bℓ∥0

Structured sparsity can be imposed (convolutional NN, recurrent NN...) or
sparsity pattern can be considered as a free parameter (algorithmic
challenge).
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Link to best approximation and training

Suppose V = L2(Ω) is our ambient space, and suppose we take

Vn = ΦL,m, L �xed, m = (W , . . . ,W )

as our approximation set.

For a given target function u ∈ V , the error of best approximation is

en(u) = inf
v∈ΦL,m

∥u − v∥L2(Ω)

= inf
(A0,b0),...,(AL,bL)

∫
Ω
|u(x)−TL ◦ σTL−1 ◦ · · · ◦ σ ◦T0(x)|2dx

quanti�es the best we can expect from Vn.

In practice, we throw N random points xi ∈ Ω, and we optimize

en(u) ≈ min
(A0,b0),...,(AL,bL)

1

N

N

∑
i=1

|u(xi )−TL ◦ σTL−1 ◦ · · · ◦ σ ◦T0(xi )|2

⇒ Questions on optimization and generalization (not covered here).
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Deep neural networks approximation theory

Many recent results on the expressivity of deep neural networks:

Approximation classes of DNN (free depth and �xed width) are larger than
those of shallow NN (�xed depth and free width) [DDF+22].

Emulation: DNN are as expressive as many classical approximation
families (polynomials, free-knot splines...).

They achieve (near to) optimal performance for functions from classical
smoothness classes (isotropic and anisotropic Sobolev, Besov, analytic
functions...).

Example: For functions u ∈ K = W k,∞((0, 1)d ), ReLU networks achieve

δ
cont,γ
n (K)L∞ := inf

E,D
sup
u∈K

∥u − D(E(u))∥,

with continuous parameter selection.

DNN approximate e�ciently functions beyond classical smoothness classes
(Takagi functions, discontinuous functions, fractals...).
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Deep neural networks approximation theory

A few surprises:

In [LSYZ21], it was proven that for functions in K = W k,∞((0, 1)d ),
ReLU networks with free depth can achieve

en(u)L∞ ≲ n−p for arbitrary p ≤ 2k/d .

However, we said that
δ
cont,γ
n (K) ∼ n−k/d .

Therefore a rate p > k/d can only be achieved with discontinuous
parameter selection. Also, it requires more than O(log2(ε

−1)) dofs to
achieve accuracy ε.

Theory-to-practice gap: No matter how high the theoretically possible
approximation rate may be to approximate a given function with a DNN,
one requires in practice an exponential quantity of samples. [GV21]

Personal interpretation: We need to study DNN approximation for more
speci�c model classes classes, and derive more closed forms to overcome
the curse of dimension, and truly justify the use of NN from the
approximation point of view.
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Conclusions

Linear approximation:

Vn is linear

Kolmogorov n-width dn(K): measures optimal linear approx.

Parametric PDEs: dn(K) decays exponentially fast for elliptic/parabolic
problems.

Nonlinear approximation:

Vn is nonlinear. Usually generated by E, D.

Manifold n-width δn(K): measures optimal nonlinear approx.

δcontn (K) ∼ n−k/d for classical regularity sets. Curse of dimension is
unavoidable.

Neural Networks: emulation, oscillations, e�cient beyond classical
smoothness classes but no complete picture yet.
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